Contributions of skin and muscle afferent input to movement sense in the human hand.
نویسندگان
چکیده
In the stationary hand, static joint-position sense originates from multimodal somatosensory input (e.g., joint, skin, and muscle). In the moving hand, however, it is uncertain how movement sense arises from these different submodalities of proprioceptors. In contrast to static-position sense, movement sense includes multiple parameters such as motion detection, direction, joint angle, and velocity. Because movement sense is both multimodal and multiparametric, it is not known how different movement parameters are represented by different afferent submodalities. In theory, each submodality could redundantly represent all movement parameters, or, alternatively, different afferent submodalities could be tuned to distinctly different movement parameters. The study described in this paper investigated how skin input and muscle input each contributes to movement sense of the hand, in particular, to the movement parameters dynamic position and velocity. Healthy adult subjects were instructed to indicate with the left hand when they sensed the unseen fingers of the right hand being passively flexed at the metacarpophalangeal (MCP) joint through a previously learned target angle. The experimental approach was to suppress input from skin and/or muscle: skin input by anesthetizing the hand, and muscle input by unexpectedly extending the wrist to prevent MCP flexion from stretching the finger extensor muscle. Input from joint afferents was assumed not to play a significant role because the task was carried out with the MCP joints near their neutral positions. We found that, during passive finger movement near the neutral position in healthy adult humans, both skin and muscle receptors contribute to movement sense but qualitatively differently. Whereas skin input contributes to both dynamic position and velocity sense, muscle input may contribute only to velocity sense.
منابع مشابه
بررسی فعالیت حلقه های گاما دوک عضلانی و α-γ Linkage در دم موش (Rat)
Background and purpose : Muscle spindle is responsible for the control of skeletal muscle fibers function at rest and movement cycle, and is known as servo agent for voluntary movement. Function of this kinetic neceptor is completely dependent on the γ- ring activity would bring activity of la fiber and group ÏÏ spindle muscle afferent. Âlso, there is close functional of muscle relationship b...
متن کاملThe proprioceptive senses: their roles in signaling body shape, body position and movement, and muscle force.
This is a review of the proprioceptive senses generated as a result of our own actions. They include the senses of position and movement of our limbs and trunk, the sense of effort, the sense of force, and the sense of heaviness. Receptors involved in proprioception are located in skin, muscles, and joints. Information about limb position and movement is not generated by individual receptors, b...
متن کاملEffects of Proprioceptive and Visual Disturbance on Inphase and Anti-phase Hand Performance
Purpose: The present study aimed to investigate the effect of sensory and movement speed manipulations on bimanual coordination dynamics. Here we compared to what extent the absence and or bias of different sensory modalities affect performance of coordination of movements. Methods: Fifteen physical education students of Shahid Beheshti University (aged 18-25 years) were partici...
متن کاملفعالیت فیبرهای گاما در وضعیت استراحت و هنگام کشش های فازیک و تونیک در دوک عضلانی دم Rat
Background and Purpose: Basically, The muscle spindle is innervated by γ – fibers, γ – fibers are divided into phasic and tonic groups on the basis of their function. Ït is believed that phasic one γ innervate all the muscle spindle fibers where as tonic one innervate only tonic muscle spindle fibers and phasic of type two. The purpose of this study was to observe the fiber activity during ph...
متن کاملKinesthetic Sensing
The term kinesthesia refers to the perception of limb movement and position, and is often broadly defined to include the perception of force as well. These sensory perceptions originate primarily from the activity of mechanoreceptors in muscles, which provides the central nervous system with information about the static length of muscles, the rate at which muscle length changes, and the forces ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 105 4 شماره
صفحات -
تاریخ انتشار 2011